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Abstract. To enhance the performance of affective models and reduce the cost of

acquiring physiological signals for real-world applications, we adopt multimodal

deep learning approach to construct affective models with SEED and DEAP

datasets to recognize different kinds of emotions. We demonstrate that high level

representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are

effective for emotion recognition. With the BDAE network, we achieve mean

accuracies of 91.01% and 83.25% on SEED and DEAP datasets, respectively,

which are much superior to those of the state-of-the-art approaches. By analysing

the confusing matrices, we found that EEG and eye features contain comple-

mentary information and the BDAE network could fully take advantage of this

complement property to enhance emotion recognition.
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1 Introduction

Nowadays, many human machine interface (HMI) products are used by ordinary people

and more HMI equipments will be needed in the future. Since emotional functions of

HMI products play an important role in our daily life, it is necessary for HMI equip-

ments to be able to recognize humans emotions automatically.

Many researchers studied emotion recognition from EEG. Liu et al. used fractal

dimension based algorithm to recognize and visualize emotions in real time [1]. Li and

Lu used EEG signals of gamma band to classify two kinds of emotions, and their results

showed that gamma band was suitable for emotion recognition [2].

Duan et al. found that differential entropy features are more suited for emotion

recognition tasks [3]. Wang et al. compared three different kinds of EEG features and

proposed a simple approach to track the trajectory of emotion changes with time [4].

Zheng and Lu employed deep neural network to classify EEG signals and examined

critical bands and channels of EEG for emotion recognition [5].

To fully use information from different modalities, Yang et al. proposed an auxil-

iary information regularized machine, which treats different modalities with different

strategies [6].
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In [7], the authors built a single modal deep autoencoder and a bimodal deep autoen-

coder to generate shared representations of images and audios. Srivastava and Salakhut-

dinov extended the methods developed in [7] to bimodal deep Boltzmann machines to

handle multimodal deep learning problems [8].

As for multimodal emotion recognition, Verma and Tiwary carried out emotion clas-

sification experiments with EEG singals and peripheral physiological signals [9]. Lu et

al. used two different fusion strategies for combining EEG and eye movement data:

feature level fusion and decision level fusion [10]. Liu et al. employed bimodal deep

autoencoders to fuse different modalities and the authors tested the framework on mul-

timodal facilitation, unimodal enhancement, and crossmodal learning tasks [11].

To our best knowledge, there is no research work reported in the literature to deal

with emotion recognition from multiple physiological signals using multimodal deep

learning algorithms. In this paper, we propose a novel multimodal emotion recognition

method using multimodal deep learning techniques. In Section 2, we will introduce

the bimodal deep autoencoder. Section 3 presents data pre-proessing, feature extraction

and experiment settings. The experiment results are described in Section 4. Following

discusses in Section 5, conclusions and future work are in Section 6.

2 Multimodal Deep Learning

2.1 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) is an undirected graph model, which has a vis-

ible layer and a hidden layer. Connections exist only between visible layer and hidden

layer and there is no connection either in visible layer or in hidden layer. Assuming vis-

ible variables v ∈ {0, 1}M and hidden variables h ∈ {0, 1}N , we have the following

energy function E:

E(v,h; θ) = −

M∑

i=1

N∑

j=1

Wijvihj −

M∑

i=1

bivi −

N∑

j=1

ajhj (1)

where θ = {a,b,W} are parameters, Wij is the symmetric weight between visible

unit i and hidden unit j, and bi and aj are bias terms of visible unit and hidden unit,

respectively. With energy function, we can get the joint distribution over the visible and

hidden units:

p(v,h; θ) =
1

Z(θ)
exp(E(v,h; θ)), and (2)
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v
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h

exp(E(v,h; θ))

where Z(θ) is the normalization constant.

Given a set of visible variables {vn}
N
n=1

, the derivative of log-likelihood with re-

spect to weight W can be calculated from Eq. (2):
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Fig. 1: The proposed multimodal emotion recognition framework. Here the BDAE net-

work is used to generate high level features from low level features or original data and

a linear SVM is trained with extracted high level features.

Various algorithms can be used to train a RBM, such as Contrastive Divergence (CD)

algorithm [12]. In this paper, Bernoulli RBM is used. We treat the visual layer as the

probabilities and we use CD algorithm to train RBMs.

2.2 Model construction

The proposed multimodal emotion recognition framework using deep learning is de-

picted in Figure 1. There are three steps in total. The first step is to train the BDAE

network.

We call this step feature selection. The second step is supervised training, and we

use the extracted high level features to train a linear SVM classifier. And the last step is

a testing process, from which the recognition results are produced.

The BDAE training procedures, including encoding part and decoding part, are

shown in Figure 2. In encoding part, we first train two RBMs for EEG features and

eye movement features, respectively. As shown in Figure 2(a), EEG RBM is for EEG

features and eye RBM is for eye movement features. Hidden layers are indicated by

hEEG and hEye, and W1,W2 are the corresponding weight matrices. After training

these two RBMs, hidden layers, hEEG and hEye, are concatenated together. The con-

catenated layer is used as the visual layer of an upper RBM, as depicted in Figure 2(b).

Figure 2(c) shows the decoding part. When unfolding the stacked RBMs to reconstruct

input features, we keep the weight matrices tied, and W1,W2, and W3 and WT
1
,WT
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Fig. 2: The structure of Bimodal Deep AutoEncoder.

andWT
3

in Figure 2(c) are tied weights. At last, we used unsupervised back-propagation

algorithm to fine-tune the weights and bias.

3 Experiment settings

3.1 The Datasets

The SEED dataset4, which was first introduced in [5], contains EEG signals and eye

movement signals of three different emotions (positive, negative, and neutral). These

signals are collected from 15 subjects during watching emotional movie clips. There are

15 movie clips and each clip lasts about 4 minutes long. The EEG signals, recorded with

ESI NeuroScan System, are of 62 channels at a sampling rate of 1000 Hz and the eye

movement signals, collected with SMI ETG eye tracking glasses, contain information

about blink, saccade fixation, and so on. In order to compare our proposed method with

the existing approach [10], we use the same data as in [10], that is, 27 data files from 9

subjects. For every data file, the data from the subjects watching the first 9 movie clips

are used as training samples and the rest ones are used as test samples.

The DEAP dataset was first introduced in [13]. The EEG signals and peripheral

physiological signals of 32 participants were recorded when they were watching music

videos. The dataset contains 32 channel EEG signals and 8 peripheral physiological

signals. The emotional music videos include 40 one-minute long small clips and sub-

jects were asked to do self-assessment by assigning values from 1 to 9 to five different

status, namely, valence, arousal, dominance, liking, and familiarity. In order to com-

pare the performance of our proposed method with previous results in [14] and [15],

we did not take familiarity into consideration. We divided the trials into two different

classes according to the assigned values. The threshold we chose is 5, and the tasks can

be treated as four binary classification problems, namely, high or low valence, arousal,

4
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dominance and liking. Among all of the data, 90% samples were used as training data

and the rest 10% samples were used as test data.

3.2 Feature Extraction

For SEED dataset, both Power Spectral Density (PSD) and Differential Entropy (DE)

features were extracted from EEG data. These two kinds of features contain five fre-

quency bands: δ (1–4 Hz), θ (4–8 Hz), α (8–14 Hz), β (14–31 Hz), and γ (31–50 Hz).

For every frequency band, the extracted features are of 62 dimensions and there are

310 dimensions for EEG features in total. As for eye movement data, we used the same

features as in [10], and there are 41 dimensions in total including both PSD and DE

features. The extracted EEG features and eye movement features were then rescaled to

[0,1] and the rescaled features were used as the inputs of BDAE network.

For DEAP dataset, we used the downloaded preprocessed data directly as the inputs

of BDAE network to generate shared representations of EEG signals and peripheral

physiological signals. First, the EEG signals and peripheral physiological signals were

separated and then the signals were segmented into 63 seconds. After segmentation, dif-

ferent channel data of the same time period (one second) are combined to form the input

signals of BDAE network. And then, shared representation features were generated by

the BDAE network.

3.3 Classification

The shared representation features generated by BDAE network are used to train a linear

SVM classifier. Because of the variance between EEG signals collected from different

people at different time, the BDAE model is data-specified, which means that we will

build a BDAE model for each data and there are 27 BDAE models built for SEED

dataset and 32 BDAE models for DEAP dataset. Network parameters, including hidden

neuron numbers, epoch numbers, and learning rate, are chosen with grid searching.

4 Results

We compare our model with two other experimental settings. When only single modal-

ity is available, we classify different emotions with PSD and DE features by SVM.

When multimodal information is available, features of different modalities are linked

directly and different emotions are recognized with the concatenated features by SVM.

SEED results Figure 3 shows the summary of multimodal facilitation experiment re-

sults. As can be seen from Figure 3, the BDAE model has the best accuracy (91.01%)

and the smallest standard deviation (8.91%).

Table 1 is the detailed experimental results of the BDAE model. The last column

means that we linked all five frequency bands of EEG features and eye movement fea-

tures directly. We examined the BDAE model three times and the recognition accuracies

shown in Table 1 were averaged.
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Fig. 3: Multimodal facilitation results on SEED dataset. Here the first two bars denote

single modality, the rest bars denote multimodal with different fusion strategies and the

fourth Fuzzy bar denotes the best result in [10].

Table 1: Accuracies of BDAE model on SEED dataset (%).

Feature δ+eye θ+eye α+eye β+eye γ+eye All

PSD
Ave. 85.12 83.89 83.18 83.23 82.92 85.10

Std. 11.09 13.13 12.68 13.65 13.59 11.82

DE
Ave. 85.41 84.64 84.58 86.55 88.01 91.01

Std. 14.03 11.03 12.78 10.48 10.25 8.91

Table 2: Comparison of six different approaches on DEAP dataset (Accuracy, %).

Method Valence Arousal Dominance Liking

EEG only 52.6 53.01 55.0 55.0

Others only 63.9 59.6 62.5 60.7

Linking 61.5 58.6 59.7 60.0

Rozgic et al [14] 76.9 69.1 73.9 75.3

Li et al [15] 58.4 64.3 65.8 66.9

Our Method 85.2 80.5 84.9 82.4

DEAP results In the literature, Rozgic et al. treated the EEG signals as a sequence

of overlapping segments and a novel non-parametric nearest neighbor model was em-

ployed to extract response-level feature from these segments [14]. Li et al. used Deep

Belief Network (DBN) to automatically extract high-level features from raw EEG sig-

nals [15].

The experimental results on the DEAP dataset are shown in Table 2. Besides base-

lines mentioned above, we also compared the BDAE results with results in [15] and

[14]. As can be seen from Table 2, the BDAE model improved recognition accuracies

in all classification tasks.



Table 3: Confusing matrices of single modality and different modality merging methods

(a) EEG

Positive Neutral Negative

Positive 93.72% 0.94% 5.34%

Neutral 5.56% 81.35% 13.09%

Negative 14.24% 29.49% 56.27%

(b) Eye

Positive Neutral Negative

Positive 81.92% 7.41% 10.67%

Neutral 14.81% 74.08% 11.11%

Negative 9.38% 11.59% 79.03%

(c) Linking

Positive Neutral Negative

Positive 93.69% 3.42% 2.89%

Neutral 7.06% 77.62% 15.32%

Negative 6.11% 16.72% 77.17%

(d) BDAE

Positive Neutral Negative

Positive 99.03% 0.00% 0.97%

Neutral 3.70% 90.26% 6.04%

Negative 11.25% 3.57% 85.18%

5 Discussion

From the experimental results, we have demonstrated that the BDAE network can be

used to extract shared representations from different modalities and the extracted fea-

tures have better performance than other features.

From Table 3(a), we can see that EEG features are good for positive emotion recog-

nition but are not good for negative emotions. As a complement, eye features have

advantage in negative emotion recognition which can be seen from Table 3(b). When

linking EEG and eye features directly, positive emotion accuracy is improved com-

pare with situation where only eye features exist and negative emotion accuracy is also

enhanced compared with when only EEG features are used. The BDAE framework

achieves an even better result. The BDAE model has the highest accuracies in all three

kinds of emotions, indicating that the BDAE model can fully use both EEG features

and eye features.

6 Conclusions and future work

This paper has shown that the shared representations extracted from the BDAE model

are good features to discriminate different emotions. Compared with other existing fea-

ture extraction strategies, the BDAE model is the best with accuracy of 91.01% on

SEED dataset. For DEAP dataset, the BDAE network largely improves recognition ac-

curacies on all four binary classification tasks. We analysed the confusing matrices of

different methods and found that EEG features and eye features contain complementary

information. The BDAE framework could fully take advantage of the complementary

property between EEG and eye features to improve emotion recognition accuracies.

Our future work will focus on invesgating the complementarity between EEG fea-

tures and eye movement features and explaining the mechanism of multimodal deep

learning for emotion recognition from EEG and other physiological signals.
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